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Abstract

A major challenge for mobile autonomous robots is the accurate estimation of odometry.
The accuracy of the odometry sensing determines the success of several crucial techniques
like localization. Most mechanical odometry sensors are generally prone to slipping and
highly dependent on the terrain - and thus lack the desired robustness. In this project we
present a vision based approach to odometry on the robot. For our implementation we use
the Nao Aldebaran Humanoid robot. Several approaches have been presented in literature
that propose such a system. An interesting challenge on the Nao is that it is a bipedal
humanoid. Thus unlike most of the approaches that propose a visual odometry system for
wheeled robots, a walking gait is more jerky and result in lower quality images, making the
task more challenging. In this project we describe how we implement a visual odometry
system based on the concept of optical flow on the Nao, describing our implementation, the
challenges we faced and the outcomes.

1 Motivation

Accurate odometry sensing is extremely crucial in mobile robots since it plays an important role
in robot localization, especially in GPS denied environments and challenges such as Robocup [13].
Mechanical odometry sensors are very dependent on the terrain, and may fail due to slipping
or moving on unknown domains. A more robust approach is to use the vision sensors of the
robot to estimate the odometry using information from successive frames since it remains totally
una↵ected by the noise due to slipping and surface irregularities. Given the availability of cheap
and good quality cameras and the increased accuracy that is achievable via a vision-based system,
there has been a growing trend to utilize the vision system either partially or fully for odometry
estimation. In this project we implement and evaluate an optical flow based visual odometry
system on the Nao robot.

2 Problem statement

The problem of odometry estimation is to estimate the change in position over time due to
navigation. The change in position is specified as the displacement in the x direction (4x), the
displacement in the y direction (4y) and the change in the heading/rotational displacement ✓
(4✓) 1. Unlike traditional odometry sensors that try to measure the wheel-rotation, etc to esti-
mate the position change, visual odometry attempts to solve this problem by analysing successive
image frames from a camera sensor. This is highly applicable especially to humanoid/ legged
robots, whose jerky motion and absence of wheels makes it challenging to estimate odometry by
the conventional approach. Most robots on the other hand are now equipped with cameras and
these are one of the most reliable and informative sensors, so a visual approach to odometry
is strongly indicated. This is the problem we address in the project. In particular though, we
would like the designed visual odometry system to work online in real time on the Nao humanoid

1
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for Robocup SPL applications [2]. There are several new challenges that are introduced with
this additional constraint.

• Most systems that use a sophisticated computer vision based approach have no strong
constraints on the computational resources or no requirement of time e�ciency. By con-
trast we would like the system to run onboard the Nao which has a low end 1.6Ghz Intel
Atom processor. We also would like the system to be very fast and e�cient since these
two elements are crucial for winning in Robocup. Thus while several systems report a
real time visual odometry system, the frame rates they achieve in practice are quite low
around 1� 2fps whereas for robocup a much higher frame rate of 25� 30fps is a major
requirement.

• Several systems that implement visual odometry try to use stereo cameras and a 3D struc-
ture from motion approach for visual odometry or panoramic omnidirectional cameras [17].
However the Nao is equipped with a pair of monocular cameras and so our vision system
is implemented for monocular rather than stereo vision

• Many of the robot systems [7] are wheeled robots which means that their motion is much
smoother as compared to legged robots like the Nao which have a jerkier gait and thus
have more noisy and blurred images.

The rest of the report is structured as follows: We describe various contemporary approaches
to visual odometry in the next section (section 3). Next in section 4 we describe in detail our
implementation of the system on Nao,our hardware and software setup and algorithm sketch.
We follow this with a description of some experiments that we used to evaluate our system
and the performance and accuracy metrics for the system. In the next section (section 6) we
describe some key points of our approach and the lessons we learnt from this project that can
be useful for other vision-based projects on the Nao. Finally we conclude with some extensions
and improvements to our approach in section 7.

3 Related Work

3.1 Introduction

The paper by Bonin et al [3] provides a good coverage of vision based techniques that have
been developed for robot navigation and related tasks. While these span a very broad spectrum
ranging from unmanned aerial vehicles to underwater navigation systems, we describe them
briefly to set the context for our work since they all are related to the visual odometry task.
Next, we take a look at the various vision-based odometry/navigation techniques that have been
used for autonomous agents also including a couple that deal with the Nao humanoid. Finally
we look at one particular technique - that of optical flow.

As stated in [3] most visual navigation tasks may be bifurcated into two broad categories:
map-based navigation and mapless navigation. Map-based techniques require a map of the en-
vironment for navigation - these maps must be either pre-provided, while map-building systems
use techniques like Simultaneous Localization and Mapping(SLAM) that may be used to build
a map as well as localize. Many of these SLAM techniques are based on vision and use input
from stereo cameras. Some systems are also based on recovering 3D structures of the environ-
ment using algorithms like Structure From Motion(SFM). Mapless systems on the other hand
do not require any a priori information of the environment for taking decisions and these may be
optical-flow based, appearance based or feature-tracking based. Optical flow based techniques
are intuitively based on tracking some features across successive image frames, thereby helping
to calculate the apparent motion of these features. These di↵er from feature-tracking systems
in that feature-based techniques typically require an accurate identification of a set of features
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- such as edges and landmarks - in the two images that are being compared, to calculate their
relative positions. These features are generally detected using various algorithms such as Canny
Edge detector, etc. On the other hand optical flow based techniques try to model the movement
of pixels, across successive frames, thus not requiring such feature-detection at the ‘higher-level’.
This is especially advantageous since it can be applied successfully to low quality images that
have motion blur and is often used for Unmanned Aerial Vehicles(UAV). Interestingly this tech-
nique was in fact adapted from the navigation in bees. Of course optical flow techniques may
be optimized by first identifying some features and then computing the optical flow for only
those features across the frames rather than for the entire image - accordingly we have the orig-
inal ‘dense optical flow’ algorithms [11] and more recent e�cient ‘sparse optical flow’ [4, 27].
Appearance based techniques are based on creating image templates tagged with localization
information in a pre-processing stage. While navigating, the robot tries to match the current
environment with these stored templates to locate itself by using the previously learned machine
classifiers. Clearly these techniques are limited to only well-known environments.

Another interesting technique is that of the visual sonar that was proposed by Velosa et al [18]
for fast unknown obstacle avoidance in Robocup with the Aibo robots. The image segmentation
stage labelled pixels of all the known colors. In the next step, they used scan-lines emitted
radially in the image, at every 5� from the robot’s center to create a run length of identically
colored pixels. These could then be identified as a known object such as a ball, or be treated
as an obstacle if they didn’t match the criteria for an expected object in the environment.
The obstacles of unknown colors were those that caused occlusions of the known-colored floor.
This technique could be extended to be used as a visual odometry technique by running it on
consecutive image frames to gauge the apparent motion of a known feature/object.

3.2 Visual Odometry : Practical Implementations

Now we examine some visual odometry techniques that have been implemented on actual sys-
tems. A good exposition of the progress of visual odometry techniques is available in the
tutorials by Scaramuzza et al [24, 9]. It describes use of feature identification algorithms such
as Harris corner and Canny edge detectors followed by feature matching algorithms such as
SIFT (Scale-invariant feature transform) and model-fitting algorithms like RANSAC (RANdom
SAmple Consensus), mostly using stereo vision. The origin of VO was mainly for use in plan-
etary rovers and one of the most successful applications of VO was in the Mars Exploration
Rovers(MERS) [20]. They used a similar approach as described above with stereo images. The
Visual Odometry helped MERS to impressively navigate unknown and rocky terrains where
ordinary odometry gave highly inaccurate results due to slipping or was impossible. While this
is quite a di↵erent approach as compared to ours it does show that dramatic pay-o↵s are likely
when Visual odometry is used. There are also some other points worth mentioning - firstly since
for MERS the main goal was robustness, there the VO system was not tuned for speed and
could take orders of seconds for image processing, on the other hand for our Robocup applica-
tion extremely fast processing is a must. Secondly since their approach was inherently feature
based, there were terrains for which no suitable feature could be detected, this scenario required
intervention from an earth based operator. Using the optical flow approach, we believe that
this dependance on features can be reduced. This is important since no external intervention is
allowed in Robocup during an ongoing game.

We next look at the system described in [14] that is designed for highly dynamic and real
time applications such as autonomous car driving. They propose using feature tracking combined
with an appearance based technique to maximize the robustness of the identified features in a
dynamic environment. They also use a Kalman filter to account for the moving state of the
system itself. Since they use an appearance based step, they also require classification for which
they use Random Forests - which are faster than the typically used Support Vector Machines
(SVMs) - and an adaptive bucketing step which improves the classifier accuracy. Though no
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direct comparisons are given, they report success over existing approaches also showing that
their vehicle could successfully stop at a tra�c signal on a busy road. One major divergence of
their approach from the one we propose is that the use of an appearance based system would
require prior hand-labelled training data for the classifier while optical flow does not require any
such step. However one encouraging takeaway for us from this approach is that using VO online
and in real time is indeed achievable.

3.3 Visual Odometry on the Nao Humanoid

Now we turn to some Visual Odometry techniques that have been specifically designed for the
Nao humanoids. The paper by Nadarajah et al [22] provides a concise summary of various
vision based techniques that teams have used in Robocup. It mentions some approaches that
have used optical flow mainly for obstacle avoidance, though with a very low frame rate - which
is something we may have to watch out for. Though it does not mention any team that has
used VO, there has been some recent work in this area. For instance in [23] the authors give a
good description of the challenges for VO on a humanoid and introduce an approach for a VO
approach that is robust to motion blur. According to them, unlike wheeled robots, walking,
turning and other such motions on the Nao may result in undesirable blurring of images that
can be a failure point for various feature tracking methods. To tackle this, they propose a
pre-processing step for every image, prior to the feature extraction. For this they estimate the
Point Spread Function(PSF), however since the blur will not be uniform for the entire image,
they first cluster the image into smaller areas and compute local PSFs for each image area.Next
they propose a variation of the SIFT scheme for feature extraction. For matching features
between frames they use the five point algorithm, obtaining the five points using a Best Bin
First algorithm. They report that their feature detection is very robust to motion blur unlike
SURF(Speeded Up Robust Features) and SIFT methods that can detect very few features when
given the same noisy images. However they report 1s to process a 640x480 image on a 2 Ghz 2
core PC. Clearly this work introduces a number of points, we should watch out for - first it may
di�cult to perform VO given noisy images, which are certainly expected for an application like
robot soccer, secondly dealing with these images may introduce additional time costs which we
cannot a↵ord.

A more recent work that uses VO for the Nao humanoid is [8]. Their aim is to develop a
more accurate odometry to improve localization. Here they develop a system that is indepen-
dent of any particular hardware by using the Robotics Service Bus(RSB) as middleware. Also
rather than pre defining features that must be tracked in each frame, they use Structure From
Motion(SFM) to detect the likely features in each frame. This ensures that their system is also
independent of a particular environment. To deal with blurred images they use a combination of
both conventional and visual odometry and return the final result based on inputs from both of
these. In case of noisy images, if the VO fails to work, then only the input from the conventional
odometry, using a weighted mean method. The final result is considerably more accurate as
compared to the one obtained from ordinary odometry alone. On a 64 bit core i5 laptop the
frame rate that they could achieve was 8fps. While for the Robocup application we do not re-
quire the system to be independent of the environment, an interesting idea to follow up would be
their fusion scheme that can help to gracefully degrade when the VO fails to work for very noisy
images. Yet another paper that describes VO for Nao is given by the Dutch team [16]. However
currently, this is still a work in progress and reliable results are yet to be reported. Similar
to the previous work, they use FAST features and the FLANN(Fast Library for Approximate
Nearest Neighbors) for feature matching. The paper also provides a good layout of the various
algorithms that are typically applied at di↵erent VO stages. Most of these works also mention
using the implementations available in the OpenCV library [5] for several key algorithms.
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3.4 A look at optical flow approaches

Finally we delve into how optical flow has been used for autonomous robots. The paper by
Thrun et al [19] is a novel application of optical flow though for a di↵erent purpose than VO.
The problem they address that most sensors can work only in the short range. They propose
a self-learning approach in which they detect an feature in the current image and trace it
back to a corresponding image frame taken some time in the past by maintaining a chain of
optical flow vectors to that previous frame. By this kind of ”reverse optical flow” they can
map the short range characteristics of the image features to their long range characteristics,
e↵ectively improving the sensing range of the robot. While the rest of the paper mainly deals
with applications of this newly acquired sensing skill, there are several important specifics that
are mentioned for optical flow which may be potentially useful for us. First to maintain an array
of optical flow vectors, they describe an e�cient memory storage scheme. Also the algorithms
they found most e↵ective are the Shi-Tomasi algorithm for feature extraction and the Lucas-
Kanade tracker for tracking these across frames - these are useful pointers relevant to our work.

We would like to conclude with the mention of the work by Campbell et al, that provides
some evaluation criteria for VO systems also showing the implementation for a simple VO system
which is based on the optical flow algorithm based on some simplified assumptions. They also
describe how this system performs with regard various criteria and thus can be a useful reference
as we design our system.

4 Our approach and implementation

In this section we first give a brief overview of our hardware configuration, our software setup
and finally describe our implementation in detail.

4.1 Hardware configuration

As we mentioned previously, we designed our system for the Nao Aldebaran Humanoid robots
that are used in the Robocup Standard Platform League 2. The Nao is equipped with two
monocular cameras with a frame rate of 30fps. One of these is near the forehead (top camera)
and streams distant objects (horizon) while the other (bottom camera) is located above the
mouth and streams the close-by surroundings. We use live streams captured from both these
cameras for our task. The Nao also has a linux kernel and a low end Intel Atom 1.6GHz
processor that allows for onboard processing and fully autonomous behavior.

4.2 Software setup

For developing our code, we started with the UT Austin code base and used the UT Nao Tool
developed here at UT, since it provides a convenient and modular approach for programming
on the Nao. We also used the OpenCV library for some standard computer vision algorithms
which we describe later. Since it is possible to communicate to Nao via a wireless or ethernet
connection, we used the 64 � bit Ubuntu OS for developing and debugging our code and then
deployed it to Nao for actual testing and running. We used git and a private GitHub repository
for version control and managing the code.

4.3 Algorithms

For framing our algorithm we were mainly guided by the paper by Campbell et al [7]. This is
a paper that tried to meet similar goals to ours - with one major di↵erence - their system was

2
https://community.aldebaran-robotics.com/nao/
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designed for a wheeled rather than a bipedal robot. In the subsequent discussions that follow
we will also discuss the implications of this.

The gist of our algorithm whose pseudo code appears in table 1 is as follows: We first take the
image frame being currently streamed by our Nao. Then we use the Shi Tomasi corner detection
algorithm [25] to ‘filter out’ the most promising features whose movement we can track from
the current frame to the successive frame. Next we use the pyramidal extension of the Lucas
Kanade algorithm [4] to calculate the optical flow vector in moving from the current frame to
the successive frame. Broadly the optical flow algorithm takes as input the features shortlisted
by the Shi Tomasi detector in the current frame and returns the corresponding matches (if it
can find them) in the next frame. More details of these algorithms are elaborated below where
we discuss the corresponding functions available in OpenCV.

Next for all the points in the first frame, which we were able to locate in the next frame, we
compute the optical flow vector. Here the features that the Shi Tomasi detector returns are just
the pixels (u, v) in the image which are corners. Thus if the feature in the original frame was
(u

p

, v
p

) and the Lucas Kanade algorithm locates this to be at (u
n

, v
n

) in the next frame, then
the flow vector for this feature is:

(�u,�v) = (u
n

� u
p

, v
n

� v
p

) (1)

We use the flow vector as computed in (1) to then obtain the ego-motion of the robot. The
ego-motion of the robot is returned as the translational and rotational displacement (�x,�y,�✓)
in the ground plane using the optic flow information that we computed in the image frame. To
facilitate this translation from the image frame to the world frame, we assume the pinhole model
for the camera 3. Similar to [7] we used the bottom camera images (which record the immediate
surroundings and the ground plane of the robot) for calculating the translational displacement.
On the other hand we used the top camera images ( which record distant objects and may be
considered to be on the horizon) for calculating the rotational displacement. This is because
they would show less e↵ects of translation due to the robot’s egomotion. For each of these two
sets of images, we used two consecutive image frames, calculating the optical flow vector from
the latest frame to its previous frame.

Now to translate the motion observed in the image frame to the word coordinate frames, we
used the standard calibration parameters of the camera and basic trigonometry to obtain both
the rotational and translational displacement in the world coordinate frame. For translation, we
directly used the CameraMatrix::getWorldPosition available in the Austin Villa source code to project
our image coordinates to the ground plane. So for instance let (u

t�1, vt�1) be the coordinates
of a corner in the first frame and let (u

t

, v
t

) be its match in the next consecutive frame. Also
assume that our camera has focus fx and let the the principal point be given as (cx, cy). With
these variables defined, we use the following equation to estimate the rotational displacement of
the robot:

✓
t�1 = arctan(ut�1�cx

fx

)

✓
t

= arctan(ut�cx
fx

)

�✓ = ✓
t

� ✓
t�1

(2)

To calculate the translation we project both (u
t

, v
t

), (u
t�1, vt�1) to the ground plane using

the CamerMatrix::getWorldPosition already available in the Austin Villa source code. Before doing this
coordinate transform however, we first remove the rotational e↵ect that was calculated in the
previous equation so more accurate estimates of the displacement cna be obtained. To do this
we multiply the (u, v) coordinates in the image frame by the following matrix - which follows
from basic coordinate geometry - to obtain their rotation free counterparts (u0, v0).

3
http://en.wikipedia.org/wiki/Camera_resectioning
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✓
u0

v0

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆✓
u
v

◆
(3)

Since there are several optical flow vectors in the image, we thus obtain several values
for the rotational displacements as well as the translational displacements. To obtain the net
displacements, we simply return the median value for each of �x,�y and �✓. We experimented
with other summary statistics, like returning the mean of the values or returning the mean of the
maximum k values. But we found that the best estimates were returned by using the median.

Algorithm 1 Visual Odometry Algorithm
1: cummulative

�x

 0
2: cummulative

�y

 0
3: cummulative

�✓

 0
4: while True do
5: prevGray  grayscale image from last frame
6: curGray  grayscale image from current frame
7: features ShiTomasiDetector(prevGray)
8: trackedFeatures LucasKanadeOpticalF low(prevGray, curGray, features)
9: i 0

10: while i < trackedFeatures.length do
11: i i+ 1
12: if trackedFeatures[i] is valid then
13: �✓

i

 CalculateRotation(trackedFeatures[i], features[i])
14: angles.add(�✓

i

)
15: RemoveRotation(trackedFeatures[i])
16: RemoveRotation(features[i])
17: ProjectOnGround(trackedFeatures[i])
18: ProjectOnGround(features[i])
19: (�x

i

,�y
i

) CalculateDisplacement(trackedFeatures[i], features[i])
20: xDisplacements.add(�x

i

)
21: yDisplacements.add(�y

i

)
22: end if
23: end while
24: average

�x

 median(xDisplacements)
25: average

�y

 median(yDisplacements)
26: average

�✓

 median(angles)
27: cummulative

�x

 cummulative
�x

+ average
�x

28: cummulative
�y

 cummulative
�y

+ average
�y

29: cummulative
�✓

 cummulative
�✓

+ average
�✓

30: end while

4.4 A look at OpenCV functions and parameters

OpenCV [5] is an open source C + + library that o↵ers e�cient implementations of a host of
state-of-art computer vision algorithms. We leverage o↵ the implementations already available
in this library for the Shi Tomasi detector as well as the pyramidal Lucas Kanade algorithm.
Here we discuss the various parameters that we used for these functions and their significance
and meaning. (We used OpenCV version 2.4.0)

The Shi Tomasi feature detector appears as the cv.goodFeaturesToTrack function in the OpenCV
:
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void goodFeaturesToTrack ( InputArray image , OutputArray corners , i n t maxCorners ,  -
double qualityLevel , double minDistance )

There are several parameters that this function takes, but we mention only the ones we used
and the ones that were relevant to us.

• image is the original image frame converted to grayscale.

• corners This array is filled in by the function, with the promising points(corners) it shortlists
in the input image

• maxCorners This is the maximum number of the promising features we want the function to
return.

• qualityLevel This parameter determines which points we would like to retain based on their
quality. The quality is determined by using the eigenvalues of the system model used in
the algorithm. The corner that has the minimal eigenvalue in this model is considered
the best - and all corners whose quality is less than this minimal eigenvalue multiplied
by qualityLevel are rejected. Thus this parameter helps us control how many features the
detector will find. By setting the quality level to be high, we may get very few points that
are more reliable, whereas in the opposite case, we get a large number of corners but with
less promise of reliability. We tried several values for this parameter. In the extreme case
we tried both 0.005 - to get back a large number of corners - for our setup on an average
this would return around (of course also based on the minDistance below) 80 points and also
0.1 which generally returned only around 4 points.

• minDistance This specifies the maximum Euclidean distance within which we would like to
find the point in the next frame from its original position in the current frame. Again
by setting the value to a large value, we allow for a greater displacement between frames
and likely more spurious vectors whereas a smaller value would allow for very small dis-
placements. We started conservatively by setting this to 20 which was all right for purely
translational motion but later increased it to 100 since this was more realistic when there
were also rotations. Overall though we found that the qualityLevel was much more critical
in deciding the corners that would be detected.

Other parameters to this function included specifying the portion of the image we wanted
to detect the corners rather than the entire image and using the Harris detector in place of
the Shi Tomasi. However we did not use these options and so do not elaborate on them here.
A major limitation of this function is that it is the bottleneck for the entire algorithm. It
consumes the maximum amount of time in the entire algorithm. With very liberal values set for
the qualityLevel, minDistance and maxCorners, (0.005, 20 and 4 respectively) the function still takes
around 0.1s per image frame, when run on the Nao - a factor of 100 times more than the next
most computationally intensive operation - calculating the pyramidal Lucas Kanade optic flow.
Clearly if the visual odometry system is to be successfully deployed for time critical applications
like Robocup - this is one of the first areas to improve.

In addition to the Shi Tomasi detector, OpenCV also has one more function cv.cornerSubPix -
this helps to pinpoint the position of the corners to sub-pixel level accuracy by iterating through
a window surrounding the corner. This function looks as follows:

void cornerSubPix ( InputArray image , InputOutputArray corners , Size winSize , Size  -
zeroZone , TermCriteria criteria )

• Again image has the same meaning as above.
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• The corners is the filled up by the Shi Tomasi detector with the initial corners and improved
by this function.

• winSize indicates the box around the pixel-level corner in which we would like to search for
the subpixel level refinement. We set the window to be (3, 3).

• The one other relevant parameter is the criteria- this specifies that the search should stop
either when a certain number of iterations have been completed or when the subpixel
coordinates are steady within some limit. We set the value of this to (CV_TERMCRIT_ITER| -
CV_TERMCRIT_EPS, 20, 0.3) i.e the process stops after either 20 iterations or when the center moves
by less than 0.3 units in the subsequent iteration, whichever is fulfilled first. While we
haven’t carefully tried to tune the parameters to this function, we believe that the current
values yield us satisfactory results. Besides the function is very fast as compared to the
Shi Tomasi detector - so the more refined corner positions can be obtained, practically free
of cost.

The final OpenCV function we use is the pyramidal Lucas Kanade algorithm for calculating
the optical flow. As explained in [4] the idea of using pyramids improves the original Lucas
Kanade algorithm by making it more ‘robust’ to larger displacements while at the same time
maintaining the accuracy. Roughly this creates variuos levels of the image - so for instance for
a 640⇥ 480 image the image at level 4 would be a downsampled image with resolution 40⇥ 30,
at level 3 we have a 80 ⇥ 60 image, at level 2 we have a 160 ⇥ 120 image, at level 1 we have a
320⇥ 240 image and finally at the level 0 we have our original 640⇥ 480 image. The algorithm
proceeds by calculating the optical flow first at the highest pyramid level, eg level 4 and then
recursively calculating the flow in images at the lower levels. This helps it to robustly deal with
displacements that are visible only on a larger scale. As is evident from here, a 4 level pyramid
seems most suitable for a 640 ⇥ 480 image, and this the value we use in the corresponding
OpenCV function:

void calcOpticalFlowPyrLK ( InputArray prevImg , InputArray nextImg , InputArray prevPts ,  -
InputOutputArray nextPts , OutputArray status , OutputArray err , Size winSize , i n t  -
maxLevel , TermCriteria criteria )

Here again we explain the most important parameters:

• prevImg and nextImg are the grayscale versions of the current and the next image frames.

• prevPts are the points we detected from the Shi Tomasi feature detector.

• The nextPts is filled up by the optical flow algorithm with the corresponding points matched
by it in the next frame.

• err is the approximated error for the matched points, returned by the algorithm (only if it
was able to locate them).

• status is a vector which is set to 1 at a particular index if the feature at the corresponding
index in prevPts was found.

• The winSize and criteria are similar to what we described in the cornerSubPix function and
we set them to the same value here as well.

• Finally maxLevel is the number of pyramid levels, we would like for our image. As we
discussed earlier for our 640⇥ 480 image, 4 levels is probably the best choice.
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5 Experiments and evaluation

To evaluate our system, we ran several tests on the Nao humanoid robot. We wanted to evaluate
the system for both its translational and rotational odometry estimation. First we enlist the
di↵erent experiments we performed. Next we discuss the reasons for the results we obtained.

Rotation Test 1 In this we made the Nao stand still and do a head scan. We ran the algorithm
to obtain its estimated values at di↵erent points during the scanning. For our ground
truth we used the output of the head yaw as sensed by the proprioception. The results
we obtained are displayed in table 1 below. Note that in this case, the robot made two
sweeps and thus the angles are presented in an ascending order rather than in the actual
order that they were measured.

Rotation Test 2 In this experiment we made the robot to turn continuously with its feet. We
set its translational velocity to 0 and the turn angle to 10�. Again we compared the angle
outputted by the VO system with the ground truth - in this case the ground truth was
taken to be the angle as manually eyeballed by an observer at that instant. Thus in this
case the ground truth values are appproximate rather than exact. The results we obtained
appear in table 2

Translation Test 1 In this test we made the robot walk straight in the positive x direction
and compared the VO output with manually measured values at various instants. Unfor-
tunately the system behaved very unpredictabely in this case. We found that the values we
measured were quite o↵ their actual values. The one optimistic fact in this case was that
the system could distinguish between no motion and motion in the positive or negative
direction.

Translation Test 2 Here we put the Nao atop a wheeled carrier and measured the odometry
estimates comparing them against the manual measurements. However we obtained the
same sort of erratic results as in the previous case.

Table 1: Rotation Test 1
Visual Odometry output(degrees) Proprioception output(degees) Error(degrees)

52.8 44.9 -7.9
55.9 54.4 -1.5
54.4 64.3 9.9
64.2 68.2 4
64.0 75.7 11.7
70.2 77.6 7.4
64.0 86.2 22.2
67.3 89.5 22.2

Table 2: Rotation Test 2
Visual Odometry output(degrees) Manual Approximation Error(degrees)

29 45 16
79 90 11
104 135 31
146 180 34
281 360 79
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In both the rotation tests, though the values measured are not very accurate, the system
was able to distinguish when the head was moved in the positive direction [0, ⇡

2

] and also the
deflection point, when the head was moved in the negative direction [0,�⇡

2

]. Below we include
a plot of the angular errors when plotted against the true angles. The errors increase as the
angles become larger, which may be because larger displacements are generally a failure case for
optical flow algorithms.

Figure 1: Error vs true angle for Rotation test 1

Figure 2: Error vs true angle for Rotation Test 2

Timing requirements

The algorithm is computationally very expensive when considered with respect to various time-
critical applications like Robot soccer. For instance with the Shi Tomasi feature detector and
the Lucas Kanade optical flow algorithm, the speed ranged from 0.8� 2fps. Profiling the code
revealed that the culprit was the Shi Tomasi detector. When we used a di↵erent set of features,
such as FAST features, we were able to improve the frame rate to some extent. Here the frame
rate rose to around 5�6fps. In this case the bottleneck was not the feature detector but rather
the Lucas Kanade optical flow algorithm. We believe that the reason for this is that FAST
typically returns a larger number of features as compared to Shi Tomasi - and this increase
in the number of features led to a slow down for the Lucas Kanade filter. When we ran the
FAST feature detection algorithm independently, there was a dramatic rise in the frame rate -
it jumped to 25� 29fps.

As it can be seen the system performed poorly on most tests and did not have an impressive
performance on the timing front either. The one case in which it showed at least some coherence
was in rotation tests. We believe that the reason for this is that the disturbance due to the legged
gait of the robot was entirely absent. A similar thing could not happen for the Traslation Test
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2 because the wheeled motion was not the intrinsic motion of the robot. Thus the push-pull
forces that were exerted onto the carrier likely disrupted the flow field of the robot. With the
background of these poor results we would now like to move to the next two sections. In the
next section we discuss some limitations of our approach and how viable it really is. In the
section following that we talk about future directions of this project that could possibly lead to
more promising results.

6 Keypoints and lessons learnt

What are some other limitations of the current system? One major limitation of the
current system is that it makes no distinction amongst the various flow fields that it
sees. For instance several flow vectors may be due to moving objects in the environment
rather than caused by the robot’s ego-motion. Since no e↵ort is made to filter out these
extraneous vectors, the end result will not be that accurate.

Another major limitation of this system is that the robot for which it is implemented is
bipedal rather than wheeled. Most systems that have successfully used visual odometry
have been for wheeled robots. The motion due to wheels is very smooth and the smoothness
leads to infact one criteria on which we can choose the likely flow vectors that represent
the ego-motion of the robot. Campbell et al [7] mention such a criteria in their approach.
To obtain the smoothness of a vector, they keep track of vectors upto 3 frames ahead
and upto 7 frames backward and calculate the angular displacement of the vector. If
the vector shows too large an angular displacement across this history of frames - it is
considered ‘unsmooth’ and discarded. We tried similarly to keep track of vectors across
frames. However we found that for our case most vectors seemed to lose relevance after
2 frames and the best results were obtained when the features were tracked from frame
to frame rather than by maintaining a history. For legged bipedal robots lke the Nao,
the motion is discontinuous and jerky. Thus to design a VO system on such systems, a
prerequisite would be to first derive a model of the noise caused by the legged motion to
the optical flow. While we were unable to make much progress in this direction we believe
that having such a model in hand should lead to much better results.

Is optical flow a viable approach for VO in time critical applications? Based on our ex-
perience of designing the system for VO, we are strongly inclined to believe that optical
flow does not seem to be a good approach for fast-paced and demanding challenges like
Robocup. While it is likely that the results should improve, if we are able to successfully
filter out the right optical flow vectors and model the noise due to the legged gait - time
still remains a major obstacle. For instance the dutch Nao team [16] designed such a
system but were unable to meet with much success. Most systems that have implemented
optical flow based algorithms have been limited by their frame rate, reaching in the best
case a frame rate of around 10fps. However in the general case most real time systems
have not been able to exceed a frame rate of 1� 2fps.

Because of the nature of the optical flow algorithm, it cannot deal with very large displace-
ments. This was somewhat o↵set by using pyramidal optical flow, but large displacements
still remain a challenge for optical flow algorithms. Because of this we feel that optical
flow algorithms are more suited for tasks like obstacle avoidance, where it is su�cient to
detect a change in the flow vectors, but a precise measurement is not required as in case
odometry applications.

Another major challenge to optical flow is the ability to distinguish flow vectors due to
di↵erent types of motions and to correctly identify which flow vectors are due to the robot’s
egomotion. In [12] they use a clustering approach to classify similar optical flow vectors
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into di↵erent groups and then label each group with the motion it is likely to represent.
However we believe that such an approach can be very time consuming.

A recent new approach to calculating the optical flow was proposed in [27] where they
focused on local optimization rather than on global optimization to decrease the timing
requirements. While the algorithm is available in OpenCV there are several constraints on
the form of inputs it can accept. However we believe that if this algorithm was implemented
and used with a speedy feature detection algorithm like FAST, it would be interesting to
look at the results.

7 Where do we go from here?

While the results of this project were not too encouraging, we believe that there are several other
approaches that can lead to a more successful visual odometry system. We have also come to the
conclusion that such systems would be based on exploiting peculiarities of a particular domain
such as Robocup to give them the necessary thrust for speed and accuracy. Before we describe
a couple of such approaches, we also describe some pipelines of general purpose algorithms that
could serve our purpose better. For feature detection, we believe that rather than using Shi
Tomasi corner detection, a much more lightweight extractor such as FAST features should be
used. While the features may be much less reliable than the ones detected via Shi Tomasi, a
post-processing step like RANSAC could help to focus only on the inliers. For matching the
points across consecutive frames, an algorithm like FLANN [21] or PatchMatch [1] could be
used. Infact the FAST !RANSAC ! FLANN chain has been used by Aldebaran themselves
to design a visual compass for Nao 4. Both FLANN and PatchMatch can very e�ciently find
matching points between successive frames.

However to really bring about a dramatic change in the time and speed - we may need to
change the entire approach altogether. For instance rather than going with a feature tracking
approach it may be more promising to go with an appearance based approach. Here we describe
three such successful applications of appearance based approach. A very interesting appearance
based approach was first proposed by Sturm et al [26] for a visual compass application. For their
features they use the transition frequency between pairs of color classes (i.e bigrams of colors)
on vertical scan lines of a segmented image. Initially they learn a cylindrical map following
a histogram distribution for all possible yaw angles. They then use maximum likelihood to
predict their current angle based on the feature vector they extract and the previously learned
cylindrical map. They mainly used this to improve the quality of their localization. Moreover
they show that on the Sony Aibos(the previous brand of robots used in the Robocup SPL) their
approach could support the full frame rate of 30fps. One draw back of their approach was that
since the cylindrical map was learnt only once, at the beginning , the predicted angles would
start showing some drift from the actual value as the robot moved away from this origin. This
drawback was corrected in the Dutch Nao team’s implementation ViCToria [15] on Nao, where
they extend this approach and further allow updates to the map to occur each time the robot
comes to a new part of the field, by dividing the field into 8 grids with 180� angle bins in each
grid. In [10], rather than using color bigrams as features, the Robocup team from the University
of New South Wales, runSWIFT, proposes to use extremely fast 1D SURF features. All these
methods have been very e�cient and fast suggesting that such appearance based techniques
maybe more feasible than the feature tracking approach of our optical flow algorithm.

4
http://www.aldebaran-robotics.com/documentation/naoqi/vision/alvisualcompass.html
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8 Conclusion

In this project we used an optical flow based approach to implement a Visual Odometry system
on the Nao humanoid. From our experiments we showed that as it currently stands, the system
would require a major overhaul to be useful - specifically it is necessary to model the e↵ect of the
discontinuous bipedal robot walk on the optical flow vectors, to get better odometry estimates.
The system also needs to be optimized for speed, however as we discussed from contemporary
literature, there may be an upper bound on the amount of improvement that may be introduced.
Thus it may be necessary to switch to an entirely new approach such as an appearance based
approach which has shown some success in the past.
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