
R2 : 14
	

Static Analysis and Symbolic Code Execution

CSI Journal of Computing | Vol. 2 • No. 4, 2013

Static Analysis and Symbolic Code Execution
Dhiren Patel, Madhura Parikh and Reema Patel*

*	National Institute of Technology, Surat, Gujarat, India
	 E-mail: (dhiren29p, madhuraparikh and reema.mtech)@gmail.com
	

As software becomes increasingly pervasive and affects critical areas of application, verifying the
correctness of programs can no longer be neglected. Several approaches in the past have utilized
testing to prove program correctness, but this is an incomplete approach. The second alternative is
to perform static analysis and model checking. While this is an exhaustive approach, it has several
limitations viz; high cost, poor scalability, spurious warnings. In this paper, we explore Symbolic
execution that takes the middle way between these two extremes, and has the potential to be
applicable in real world settings. Initially proposed in the 1970’s, symbolic execution has recently
gained focus amongst researchers. Starting from its birth, we survey tools that have successfully
implemented symbolic execution and the modifications that have been proposed to make it widely
applicable. We also examine the research challenges that exist with this approach and how well-
received it has been in industry.

Index Terms : Static Analysis, Symbolic Execution, Dynamic Test Generation, Concolic Execution,
Compositional Testing.

1.	 Introduction
As software is being used in increasingly complex and

critical applications, the importance of program verification
cannot be stressed enough. Conventionally two approaches
to verification have been cited - static analysis and dynamic
analysis. Both these approaches however, have their own
short-comings that have curtailed their use in practice. We
first introduce these conventional methods of verification,
examining their pros and cons. We then look at the idea of
symbolic execution, as it was originally proposed by King
[1] in 1976. Symbolic execution was essentially a static
analysis method. However it has recently evolved to a new
form, imbibing advantages of both static and dynamic code
analysis. The possible areas of application of this novel form
of symbolic execution are then discussed in later sections.

1.1	 Static Analysis of Programs

An excellent introduction and review of static analysis
can be found in the book by Nielson [2]. Static analysis of code,
as the name suggests tries to analyze the program behavior
without actually executing the code. Thus the correctness of
the program is analyzed by applying formal techniques on the
source code or the object code. One of the earliest examples
of a static analysis tool is the wellknown Lint program for
C. Such bug finding tools generally use static analysis only
in a shallow way, meaning that they look out for unexpected
constructs in the program. This means that they will also
raise an increased number of false alarms, while missing out
on subtle errors. Some important concepts associated with
any static analysis approach are whether the approach is

sound and complete. A sound approach is guaranteed to find
any true error in the program; a complete one will find only
errors that are true. Some of the commonly used methods of
formal static analysis are summarized below:

1.1.1 Type Systems

Types are most widely used in static analysis. This is
because most of the major programming languages use the
concept of types. A type is just a set of values. For e.g the type
Int would denote all the integers whereas the type Bool in a
language like C ++ would represent the set true, false. The
concept of types in fact follows from the concept of abstract
interpretation, which is used in any static analysis approach.
Ideally static analysis should be able to represent all possible
executions of a program. This is however un-decidable in
practice. So a compromise is to consider only abstract values
rather than the infinite set of all possible concrete values.
Thus Int is an abstraction for the infinite possible integers.

1.1.2 Data Flow Analysis

Data flow analysis usually requires us to construct
a Control Flow Graph (CFG). This is a directed graph in
which each node is a statement and edges represent the flow
of control. Data flow analysis tries to find facts about the
program by considering all possible states of the program.
It includes different analyses such as liveliness analysis,
reaching definitions, etc., that are used in optimizing
compilers. Detailed literature on data-flow analysis may be

Dhiren Patel, et.al.	 R2 : 15

CSI Journal of Computing | Vol. 2 • No. 4, 2013

found in any standard text on compilers such as [3].

1.1.3 Model Checking

Model checking usually uses some form of temporal
logic such as finite automata, to represent the specifications
of a program. The state space is then exhaustively searched,
to ensure that the specifications are met correctly. It is an
approach that suffers from state space explosion. Bounded
model checking examines only a prefix of all possible
executions. However this may result in later errors being
missed.

1.2	 Dynamic Analysis of Programs

Dynamic analysis is mainly done through testing and
debugging. Testing tries to run a program on a subset of the
possible inputs to observe if a failure occurs or not. Since it is
not possible to run the program exhaustively over all possible
inputs, testing has the problem of absence of coverage. One
important concern is that the test case generation should be
automated if it is to be applicable to commercial programs
that are thousands of lines long. The way these tests are
generated is important, since naively generating the test
cases in any random manner may likely miss out on several
errors.

Debugging involves pinpointing the exact location of
errors, and fixing these up. In earlier times, debugging was
usually achieved by inserting print statements at suspicious
locations in the program. With the advent of IDEs and
better debuggers, this situation is somewhat eased, however
debugging even today is highly arcane and tedious, requiring
much manual involvement.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 2

follows from the concept of abstract interpre-
tation, which is used in any static analysis
approach. Ideally static analysis should be able
to represent all possible executions of a pro-
gram. This is however un-decidable in practice.
So a compromise is to consider only abstract
values rather than the infinite set of all possible
concrete values. Thus Int is an abstraction for
the infinite possible integers.

1.1.2 Data Flow Analysis

Data flow analysis usually requires us to con-
struct a Control Flow Graph (CFG). This is a
directed graph in which each node is a state-
ment and edges represent the flow of control.
Data flow analysis tries to find facts about the
program by considering all possible states of
the program. It includes different analyses such
as liveliness analysis, reaching definitions, etc.,
that are used in optimizing compilers. Detailed
literature on data-flow analysis may be found
in any standard text on compilers such as [3].

1.1.3 Model Checking

Model checking usually uses some form of
temporal logic such as finite automata, to rep-
resent the specifications of a program. The state
space is then exhaustively searched, to ensure
that the specifications are met correctly. It is an
approach that suffers from state space explo-
sion. Bounded model checking examines only
a prefix of all possible executions. However this
may result in later errors being missed.

1.2 Dynamic Analysis of Programs

Dynamic analysis is mainly done through test-
ing and debugging. Testing tries to run a pro-
gram on a subset of the possible inputs to
observe if a failure occurs or not. Since it is not
possible to run the program exhaustively over
all possible inputs, testing has the problem of
absence of coverage. One important concern is
that the test case generation should be auto-
mated if it is to be applicable to commercial
programs that are thousands of lines long. The
way these tests are generated is important,
since naively generating the test cases in any
random manner may likely miss out on several
errors.

Debugging involves pinpointing the exact
location of errors, and fixing these up. In ear-
lier times, debugging was usually achieved by
inserting print statements at suspicious loca-
tions in the program. With the advent of IDEs
and better debuggers, this situation is some-
what eased, however debugging even today
is highly arcane and tedious, requiring much
manual involvement.

Fig. 1. All the trajectories in a program execu-
tion space [4]

Fig. 2. Trajectory coverage with model-checking
[4]

A good visualization of these different meth-
ods is shown in Figures 1 2 3. In each of
these figures x(t) is a vector of the input state
and output of the program that evolves as a
function of time t. Figure 1 shows the possible
different trajectories that a program may take
up when executed. As Figure 2 shows, model
checking tries to cover each of the trajectories,
however to be practical, it must be bounded.
Thus it misses out on any late errors. On the
other hand testing as shown in Figure 3 will

Fig. 1 : All the trajectories in a
program execution space [4]

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 2

follows from the concept of abstract interpre-
tation, which is used in any static analysis
approach. Ideally static analysis should be able
to represent all possible executions of a pro-
gram. This is however un-decidable in practice.
So a compromise is to consider only abstract
values rather than the infinite set of all possible
concrete values. Thus Int is an abstraction for
the infinite possible integers.

1.1.2 Data Flow Analysis

Data flow analysis usually requires us to con-
struct a Control Flow Graph (CFG). This is a
directed graph in which each node is a state-
ment and edges represent the flow of control.
Data flow analysis tries to find facts about the
program by considering all possible states of
the program. It includes different analyses such
as liveliness analysis, reaching definitions, etc.,
that are used in optimizing compilers. Detailed
literature on data-flow analysis may be found
in any standard text on compilers such as [3].

1.1.3 Model Checking

Model checking usually uses some form of
temporal logic such as finite automata, to rep-
resent the specifications of a program. The state
space is then exhaustively searched, to ensure
that the specifications are met correctly. It is an
approach that suffers from state space explo-
sion. Bounded model checking examines only
a prefix of all possible executions. However this
may result in later errors being missed.

1.2 Dynamic Analysis of Programs

Dynamic analysis is mainly done through test-
ing and debugging. Testing tries to run a pro-
gram on a subset of the possible inputs to
observe if a failure occurs or not. Since it is not
possible to run the program exhaustively over
all possible inputs, testing has the problem of
absence of coverage. One important concern is
that the test case generation should be auto-
mated if it is to be applicable to commercial
programs that are thousands of lines long. The
way these tests are generated is important,
since naively generating the test cases in any
random manner may likely miss out on several
errors.

Debugging involves pinpointing the exact
location of errors, and fixing these up. In ear-
lier times, debugging was usually achieved by
inserting print statements at suspicious loca-
tions in the program. With the advent of IDEs
and better debuggers, this situation is some-
what eased, however debugging even today
is highly arcane and tedious, requiring much
manual involvement.

Fig. 1. All the trajectories in a program execu-
tion space [4]

Fig. 2. Trajectory coverage with model-checking
[4]

A good visualization of these different meth-
ods is shown in Figures 1 2 3. In each of
these figures x(t) is a vector of the input state
and output of the program that evolves as a
function of time t. Figure 1 shows the possible
different trajectories that a program may take
up when executed. As Figure 2 shows, model
checking tries to cover each of the trajectories,
however to be practical, it must be bounded.
Thus it misses out on any late errors. On the
other hand testing as shown in Figure 3 will

Fig. 2 : Trajectory coverage with model-checking [4]

A good visualization of these different methods is shown
in Figures 1 2 3. In each of these figures x(t) is a vector of
the input state and output of the program that evolves as
a function of time t. Figure 1 shows the possible different
trajectories that a program may take up when executed. As
Figure 2 shows, model checking tries to cover each of the
trajectories, however to be practical, it must be bounded. Thus
it misses out on any late errors. On the other hand testing
as shown in Figure 3 will leave out some of the trajectories
entirely while some are covered completely. Clearly even this
is not satisfactory.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 3

leave out some of the trajectories entirely while
some are covered completely. Clearly even this
is not satisfactory.

Fig. 3. Trajectory coverage with dynamic analy-
sis [4]

1.3 Symbolic Execution : Old Paradigm
Gets New Life

The concept of symbolic execution was first
proposed by King in his seminal paper [1]. We
first try to understand the concept in the form
it was originally proposed. As we have already
noted, program verification conventionally is
done either through proving by formal tech-
niques, or by testing with a random input set.
Symbolic execution is a middle way between
these two extremes. In symbolic execution, the
program is executed, but the input fed to the
program is symbolic rather than concrete. This
means that each symbolic input stands for an
entire class of inputs rather than individual
input. Thus while testing tries to check the
program only on a very small subset of the
possible inputs and verification checks the pro-
gram over all of the possible inputs, symbolic
execution checks the program over classes of
the input. So it may be considered to be a more
generalized form of testing or a less stringent
verification.

Whenever a program is executed concretely,
the program state usually consists of the pro-
gram counter and the values of the program
variables. When a program is to be executed
symbolically, one additional piece of informa-
tion must also be maintained in the so-called
symbolic program state. This is the path con-
dition (pc). The pc is the accumulation of all

the criteria that the input must satisfy for an
execution to follow the associated path [1].
As we encounter, conditions or branches in
the program flow, such as IF statements, these
conditions are conjoined with the pc along that
path. Thus a pc exists, corresponding to each
alternative path that the program may follow.
This pc is thus a Boolean formula. In order to
reason about whether a particular control flow
is possible for the program, we should check
whether the corresponding Boolean formula
that represents its pc is satisfiable. For this
powerful SMT/SAT solvers are used. Of course
while many satisfiability problems are beyond
the scope of these solvers, many solvers do
exist for linear equations, e.g Z3, STP, Yices, etc.

Thus corresponding to each program, we can
generate the execution tree that shows all the
possible execution paths of the program. One
such symbolic execution tree and the corre-
sponding code snippet appear in the Figure 4.
Here it is seen that at each point in a particular
path, the pc is updated with some additional
constraints if necessary. If the final pc for a
particular path is found to be un-satisfiable,
then that state of the program is unreachable.
The various path conditions accrued may be
used to generate test cases. All concrete values
that satisfy the path condition for a particular
path are guaranteed to follow that path when
inputted to the program.

Fig. 4. A symbolic execution tree [5]

It is important to note that classical sym-
bolic execution, will work only for sequential
programs. In recent times, several extensions
to this classical approach have been proposed.

Fig. 3 : Trajectory coverage with dynamic analysis [4]

1.3	� Symbolic Execution : Old Paradigm Gets New Life

The concept of symbolic execution was first proposed by
King in his seminal paper [1]. We first try to understand the
concept in the form it was originally proposed. As we have
already noted, program verification conventionally is done
either through proving by formal techniques, or by testing
with a random input set. Symbolic execution is a middle
way between these two extremes. In symbolic execution,
the program is executed, but the input fed to the program
is symbolic rather than concrete. This means that each
symbolic input stands for an entire class of inputs rather
than individual input. Thus while testing tries to check the
program only on a very small subset of the possible inputs
and verification checks the program over all of the possible
inputs, symbolic execution checks the program over classes
of the input. So it may be considered to be a more generalized
form of testing or a less stringent verification.

Whenever a program is executed concretely, the program
state usually consists of the program counter and the values
of the program variables. When a program is to be executed
symbolically, one additional piece of information must also
be maintained in the so-called symbolic program state. This
is the path condition (pc). The pc is the accumulation of all
the criteria that the input must satisfy for an execution to
follow the associated path [1]. As we encounter, conditions
or branches in the program flow, such as IF statements,
these conditions are conjoined with the pc along that path.
Thus a pc exists, corresponding to each alternative path that
the program may follow. This pc is thus a Boolean formula.
In order to reason about whether a particular control flow
is possible for the program, we should check whether the
corresponding Boolean formula that represents its pc is
satisfiable. For this powerful SMT/SAT solvers are used.
Of course while many satisfiability problems are beyond

R2 : 16
	

Static Analysis and Symbolic Code Execution

CSI Journal of Computing | Vol. 2 • No. 4, 2013

the scope of these solvers, many solvers do exist for linear
equations, e.g Z3, STP, Yices, etc.

Thus corresponding to each program, we can generate
the execution tree that shows all the possible execution paths
of the program. One such symbolic execution tree and the
corresponding code snippet appear in the Figure 4. Here
it is seen that at each point in a particular path, the pc is
updated with some additional constraints if necessary. If the
final pc for a particular path is found to be un-satisfiable, then
that state of the program is unreachable. The various path
conditions accrued may be used to generate test cases. All
concrete values that satisfy the path condition for a particular
path are guaranteed to follow that path when inputted to the
program.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 3

leave out some of the trajectories entirely while
some are covered completely. Clearly even this
is not satisfactory.

Fig. 3. Trajectory coverage with dynamic analy-
sis [4]

1.3 Symbolic Execution : Old Paradigm
Gets New Life

The concept of symbolic execution was first
proposed by King in his seminal paper [1]. We
first try to understand the concept in the form
it was originally proposed. As we have already
noted, program verification conventionally is
done either through proving by formal tech-
niques, or by testing with a random input set.
Symbolic execution is a middle way between
these two extremes. In symbolic execution, the
program is executed, but the input fed to the
program is symbolic rather than concrete. This
means that each symbolic input stands for an
entire class of inputs rather than individual
input. Thus while testing tries to check the
program only on a very small subset of the
possible inputs and verification checks the pro-
gram over all of the possible inputs, symbolic
execution checks the program over classes of
the input. So it may be considered to be a more
generalized form of testing or a less stringent
verification.

Whenever a program is executed concretely,
the program state usually consists of the pro-
gram counter and the values of the program
variables. When a program is to be executed
symbolically, one additional piece of informa-
tion must also be maintained in the so-called
symbolic program state. This is the path con-
dition (pc). The pc is the accumulation of all

the criteria that the input must satisfy for an
execution to follow the associated path [1].
As we encounter, conditions or branches in
the program flow, such as IF statements, these
conditions are conjoined with the pc along that
path. Thus a pc exists, corresponding to each
alternative path that the program may follow.
This pc is thus a Boolean formula. In order to
reason about whether a particular control flow
is possible for the program, we should check
whether the corresponding Boolean formula
that represents its pc is satisfiable. For this
powerful SMT/SAT solvers are used. Of course
while many satisfiability problems are beyond
the scope of these solvers, many solvers do
exist for linear equations, e.g Z3, STP, Yices, etc.

Thus corresponding to each program, we can
generate the execution tree that shows all the
possible execution paths of the program. One
such symbolic execution tree and the corre-
sponding code snippet appear in the Figure 4.
Here it is seen that at each point in a particular
path, the pc is updated with some additional
constraints if necessary. If the final pc for a
particular path is found to be un-satisfiable,
then that state of the program is unreachable.
The various path conditions accrued may be
used to generate test cases. All concrete values
that satisfy the path condition for a particular
path are guaranteed to follow that path when
inputted to the program.

Fig. 4. A symbolic execution tree [5]

It is important to note that classical sym-
bolic execution, will work only for sequential
programs. In recent times, several extensions
to this classical approach have been proposed.

Fig. 4 : A symbolic execution tree [5]

It is important to note that classical symbolic execution,
will work only for sequential programs. In recent times,
several extensions to this classical approach have been
proposed. Excellent reviews of the current trends in symbolic
execution are available in [6] [7]. These new approaches
include ideas like generalized symbolic execution, concolic
symbolic execution, compositional symbolic execution, etc.
They have made it possible to extend symbolic execution
to multi-threaded programs and advanced programming
constructs, such as recursive data-structures. We shall survey
a few of these ideas in a later section.

1.4	 Applications of Symbolic Execution

The paper by Visser et al [8] covers a depth of areas to
which symbolic execution may be applied. Here we enlist
some major areas of focus.

1.4.1 Test case generation

This is one of the traditional uses of symbolic execution.
Since symbolic execution deals with classes of input, it can
be used to automate generation of test-cases with a high
degree of coverage. This has recently become well known as
whitebox testing.

1.4.2 Proof of program properties

Symbolic execution can be successfully applied for proving
that certain assertions, say for instance loop invariants, are
indeed maintained when a program is executed.

1.4.3 Static detection of run time errors

This uses symbolic execution to detect if program states,
that may lead to run time violations, exist. Such analysis
is especially useful in the case of malware analysis, where
it may be expensive to run the code in order to observe its
noxious behavior.

1.4.4 Invariant inference

By using symbolic execution, we may predict the pre
or post conditions that are likely to be maintained by the
program.

1.4.5 Parallel numerical program analysis

This is a new application of symbolic execution to
establish that the parallel program is indeed equivalent to its
corresponding sequential counterpart.

1.4.6 Differential symbolic execution

This is again an emerging area. Here two programs are
compared to find out the logical difference between them. It
may be used in software development and maintenance to
ensure for instance that re-factored code is equivalent to the
original source.

The rest of the paper is organized as follows: In section
2 we discuss some tools such as KLEE that are developed
using symbolic execution. Some exciting new trends that are
emerging in symbolic execution are described in section 3.
Section 4 examines some of the major challenges that symbolic
execution techniques must counter. Finally, in section 5, we
see how well accepted the various symbolic execution tools
have been in industry.

2.	 Symbolic Execution: Case Studies
In this section we explore two tools that have successfully

used symbolic execution for program analysis. Several
breakthrough tools have been proposed, but we focus on only
two such contemporary tools. Our first case study is on KLEE
- which is an automatic test case generation framework for C.
Since C is a conventional statically typed language, the study
of KLEE will acquaint us with how symbolic execution can
be applied in such a mainstream language. Our second case
study deals with Kudzu - which is an automated vulnerability
analysis tool for JavaScript. A study of Kudzu will give us
a flavour of how symbolic execution may be applied to solve
string constraints, a major application challenge.

2.1	 Case Study 1: KLEE

KLEE is one of the most successful implementations of
symbolic execution as a means for automated generation of
high coverage test cases. The paper that provides detailed
technical overview of KLEE is [9]. KLEE has two major
execution goals:
1)	 Try to hit every line of code. This will help achieve high

coverage.
2)	 At each dangerous operation that is detected, try to

Dhiren Patel, et.al.	 R2 : 17

CSI Journal of Computing | Vol. 2 • No. 4, 2013

generate the test case that could potentially cause the
error. Do this by solving that path’s path condition.
The authors of this paper were previously involved in

the development of a similar tool EXE [10]. They have based
KLEE on their previous experiences and have shown that
KLEE generated tests could indeed achieve high test coverage
of over 90%, sometimes even beating manually developed test
suites. Here we briefly explore some major features.
2.1.1 Architecture

The KLEE framework is designed for:
Simplicity: It operates on the well known LLVM byte

code. This means that it can be applied to a number of
languages that are supported by LLVM. LLVM has a RISC
like instruction set and the byte code is generated from the
source code, which is compiled using the well known GCC
compiler. Thus no special modifications need to be made in
order to have the code analyzed by KLEE. KLEE can take
in the raw code directly and generate the test cases, and is
therefore quick and easy to use.

Scalability: Since there can be an exponential
increase in the number of states, KLEE uses compact state
representation. It borrows the well-known principle of copy
on write (vfork vs. fork) from Linux, to reduce memory
requirements. It also implements the heap as immutable
and shares the heap amongst multiple states. Finally it
uses compact expression representation (e.g. when it has
expression x+1=10 simply store this as the expression x=9.)

Speed: It achieves speed by trying to minimize the calls
to the SAT solver, since these are the most expensive. It also
uses simplified expressions as input to the constraint solver,
and uses the concept of caches to dramatically improve speed.

The figure 5 shows how the different components of
KLEE integrate to produce very accurate test cases for the
sample code snippet on the lower-left in the figure.

2.1.2 Solver Optimization

The major time consumed by most symbolic execution
tools is in trying to solve the constraints. Thus KLEE has
used some clever techniques to greatly reduce this time cost.
It uses the concept of constraint independence to give only
relevant portions of the memory to the solver for a particular
constraint rather than the complete store of all the variables.

It uses the concept of counter-example cache to store results
of previous queries. These results are checked to see if they
satisfy a current query, since it is much easier to check the
solution rather than solve. Also it tries to see if the cached
solution has some subset, superset relation to the current
constraint’s solution state.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 5

could potentially cause the error. Do this
by solving that path’s path condition.

The authors of this paper were previously in-
volved in the development of a similar tool
EXE [10]. They have based KLEE on their pre-
vious experiences and have shown that KLEE
generated tests could indeed achieve high test
coverage of over 90%, sometimes even beating
manually developed test suites. Here we briefly
explore some major features.

2.1.1 Architecture

The KLEE framework is designed for:
Simplicity: It ooperates on the well known

LLVM byte code. This means that it can be
applied to a number of languages that are
supported by LLVM. LLVM has a RISC like
instruction set and the byte code is generated
from the source code, which is compiled using
the well known GCC compiler. Thus no special
modifications need to be made in order to have
the code analyzed by KLEE. KLEE can take
in the raw code directly and generate the test
cases, and is therefore quick and easy to use.

Scalability: Since there can be an exponential
increase in the number of states, KLEE uses
compact state representation. It borrows the
well-known principle of copy on write (vfork
vs. fork) from Linux, to reduce memory re-
quirements. It also implements the heap as im-
mutable and shares the heap amongst multiple
states. Finally it uses compact expression rep-
resentation (e.g. when it has expression x+1=10
simply store this as the expression x=9.)

Speed: It achieves speed by trying to min-
imize the calls to the SAT solver, since these
are the most expensive. It also uses simplified
expressions as input to the constraint solver,
and uses the concept of caches to dramatically
improve speed.

The figure 5 shows how the different com-
ponents of KLEE integrate to produce very
accurate test cases for the sample code snippet
on the lower-left in the figure.

2.1.2 Solver Optimization

The major time consumed by most symbolic
execution tools is in trying to solve the con-
straints. Thus KLEE has used some clever tech-
niques to greatly reduce this time cost. It uses

Fig. 5. Different components of KLEE [11]

the concept of constraint independence to give
only relevant portions of the memory to the
solver for a particular constraint rather than the
complete store of all the variables. It uses the
concept of counter-example cache to store results
of previous queries. These results are checked
to see if they satisfy a current query, since
it is much easier to check the solution rather
than solve. Also it tries to see if the cached
solution has some subset, superset relation to
the current constraint’s solution state.

2.1.3 Major Challenges

KLEE has tried to answer two challenges:

1) How to model the interaction of the pro-
gram with the environment: Many pro-
grams have command line arguments, en-
vironment variables, file handling, etc. To
provide a realistic environment in such
cases, KLEE makers have tried to pro-
vide a symbolic environment, which the
program sees when it is executed sym-
bolically. This tries to model its interac-
tion with real-life system calls and OS
resources.

2) How to address exponential paths
through the code: The state space may
grow exponentially. So KLEE uses two
strategies to determine which state to
choose next from the current state. The
first strategy is Random Path Selection
- this uses a binary tree to represent
active states, and the tree is randomly
traversed from the root. The approach is
biased towards states higher up in the
tree where simpler constraints need to be

Fig. 5 : Different components of KLEE [11]

2.1.3 Major Challenges

KLEE has tried to answer two challenges:
1)	 How to model the interaction of the program with the

environment: Many programs have command line
arguments, environment variables, file handling, etc.
To provide a realistic environment in such cases, KLEE
makers have tried to provide a symbolic environment,
which the program sees when it is executed symbolically.
This tries to model its interaction with real-life system
calls and OS resources.

2)	 How to address exponential paths through the code: The
state space may grow exponentially. So KLEE uses two
strategies to determine which state to choose next from
the current state. The first strategy is Random Path
Selection - this uses a binary tree to represent active
states, and the tree is randomly traversed from the root.
The approach is biased towards states higher up in the
tree where simpler constraints need to be solved. The
second is Coverage Optimized Search where it uses some
heuristics to compute weights for each state and then
randomly selects the state that is likely to offer better
coverage.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 6

Fig. 6. The various components in the design of Kudzu [12]

solved. The second is Coverage Optimized
Search where it uses some heuristics to
compute weights for each state and then
randomly selects the state that is likely
to offer better coverage.

2.1.4 Evaluation Highlights

The metric for evaluation is line coverage.
KLEE generated test cases for Coreutils, Minix,
Busybox, etc. It was able to outperform man-
ually designed test suites developed over a
period of 15 years. The coverage was over 90%.
It found several major flaws in GNU Coreutils,
which is one of the most heavily tested pro-
gram suite. Thus it was shown to have great
potential for real world application.

2.2 Case Study 2: Kudzu

Kudzu [13] is an automated tool for find-
ing client side code injection vulnerabilities in
JavaScript. It is the first attempt of this kind.
In a language like JavaScript, the input is in
the form of strings. This means that the solver
should be able to solve string constraints. To
enable this, Kudzu introduces an expressive
constraint language and a constraint solver
Kaluza specifically geared for handling string
constraints, rather than numeric ones.

2.2.1 System Design

For the rich web applications that are created
using AJAX, the input space is conceptually
divided into 2: event space - that deals with
various event handler code e.g. mouse clicks
or form submissions, that may occur in any

order - and secondly value space - these are
the values provided by the user in form fields,
text areas, URL parameters, etc. Kudzu uses the
concept of GUI exploration to handle vulnera-
bilities associated with the event space while
using symbolic execution to handle the un-
trusted input. Next, it incorporates the power-
ful string constraint solver Kaluza. For this, the
original JavaScript instructions are translated to
a simple language - JASIL. A block diagram
for the system architecture appears in Figure
2.1.1. Kudzu is the automated tool for finding
security vulnerabilities in JavaScript code.

2.2.2 Constraint Language

The constraint language is very expressive
for string constraints. Various constraints are
provided to check if a given string matches
a given regular expression, comparing two
strings for equality or concatenation, compar-
ing the length of two strings and checking
the length of a string against some integer.
All these facilities make the constraint solver
more powerful than its contemporaries. More-
over in-spite of its high expressiveness, the
constraint language is simple, making the con-
straint solver efficient.

2.2.3 Constraint Solver

Kaluza is a SAT based SMT constraint solver. It
first of all takes in as input the JavaScript code
and translates it to the core constraint language
using a DFA-based approach. Next, it solves for
various constraints such as length and integer
constraints, etc. Finally it takes the input strings
and translates them into bit vector notation,

Fig. 6 : The various components in the design of Kudzu [12]

R2 : 18
	

Static Analysis and Symbolic Code Execution

CSI Journal of Computing | Vol. 2 • No. 4, 2013

2.1.4 Evaluation Highlights

The metric for evaluation is line coverage. KLEE
generated test cases for Coreutils, Minix, Busybox, etc. It was
able to outperform manually designed test suites developed
over a period of 15 years. The coverage was over 90%. It
found several major flaws in GNU Coreutils, which is one of
the most heavily tested program suite. Thus it was shown to
have great potential for real world application.

2.2	 Case Study 2: Kudzu

Kudzu [13] is an automated tool for finding client side
code injection vulnerabilities in JavaScript. It is the first
attempt of this kind. In a language like JavaScript, the
input is in the form of strings. This means that the solver
should be able to solve string constraints. To enable this,
Kudzu introduces an expressive constraint language and
a constraint solver Kaluza specifically geared for handling
string constraints, rather than numeric ones.

2.2.1 System Design

For the rich web applications that are created using
AJAX, the input space is conceptually divided into 2: event
space - that deals with various event handler code e.g. mouse
clicks or form submissions, that may occur in any order
- and secondly value space - these are the values provided
by the user in form fields, text areas, URL parameters,
etc. Kudzu uses the concept of GUI exploration to handle
vulnerabilities associated with the event space while using
symbolic execution to handle the untrusted input. Next, it
incorporates the powerful string constraint solver Kaluza.
For this, the original JavaScript instructions are translated
to a simple language - JASIL. A block diagram for the system
architecture appears in Figure 2.1.1. Kudzu is the automated
tool for finding security vulnerabilities in JavaScript code.

2.2.2 Constraint Language

The constraint language is very expressive for string
constraints. Various constraints are provided to check if a
given string matches a given regular expression, comparing
two strings for equality or concatenation, comparing the
length of two strings and checking the length of a string
against some integer. All these facilities make the constraint
solver more powerful than its contemporaries. Moreover in-
spite of its high expressiveness, the constraint language is
simple, making the constraint solver efficient.

2.2.3 Constraint Solver

Kaluza is a SAT based SMT constraint solver. It first of
all takes in as input the JavaScript code and translates it to
the core constraint language using a DFA-based approach.
Next, it solves for various constraints such as length and
integer constraints, etc. Finally it takes the input strings and
translates them into bit vector notation, by concatenating the
binary representation of consecutive characters in the string.

It then checks to see if the bit vector notation of the string
contents satisfies the constraints using the SMT solver. It
also uses the concept of k-boundedness, and expects the user
to input the value of k- the maximum length of the strings to
be included in the search space. This is essential as otherwise
the problem would become unbounded and unsolvable
practically.

2.2.4 Evaluation

The solver is very successful for detecting client side code
injection attacks. It was able to detect 2 new vulnerabilities
when tested on 18 popular web apps and also 9 known
vulnerabilities that had earlier been detected using manual
testing. The constraint solver is also highly efficient, when
a constraint is satisfiable, it can find the solution in under a
second, when it is not it may take up-to 50s to report failure.
The only requirement is that the user must provide an upper
bound on the search space.

3.	� Exciting New Areas in Symbolic Execution
Research
Several recent trends have emerged that attempt to

carry out some form of hybrid analysis that tries to combine
symbolic execution with other techniques in an attempt to
improve the overall performance. Several such techniques
have been proposed for testing critical applications such as in
NASA [14] [15]. We survey some such trends in the present
section.

3.1	� Concolic Execution: Combining Symbolic and
Concrete Analysis

A very concise tutorial on this technique is available in
[16]. Concolic execution combines both random testing as
well as symbolic execution. Whenever a concrete execution
is performed using random inputs, the path conditions for
that particular path are also simultaneously constructed. In
the next run the gathered constraints are used to generate
new inputs, which will drive the execution along a different
branch. For e.g. by negating one constraint at a branch point,
the new input generated will then guide the program along the
other branch. This is repeated until no new constraints can be
generated. Thus significant coverage is attained. At the same
time, if some constraints are too difficult for the solver, then
the concrete input comes to rescue, by replacing some of the
symbolic variables with concrete values. A good case study
of such a hybrid system is DART [17]. DART is an algorithm
for dynamic test case generation using random testing and
symbolic execution. It is one of the precedents in this area,
originally developed at Bell Labs. Here the major advantages
of this approach are that the random test generation is fully
automated, not requiring any manual intervention, thanks to
the path constraints generated by symbolic execution. Unlike
random testing it is also more effective, since the program
execution may be directed along specific paths by using
the path constraints. It also tackles the difficulties of pure

Dhiren Patel, et.al.	 R2 : 19

CSI Journal of Computing | Vol. 2 • No. 4, 2013

symbolic execution where constraints may be too difficult to
solve. Table 1 shows some recent tools that have been used
symbolic execution.

3.2	 Compositional Symbolic Execution

Compositional symbolic execution is an attempt to
extend concolic execution to make it more scalable by
intelligently avoiding state space explosion. The seminal
paper introducing this concept is [18]. Here the major concept
used is to generate summaries for individual functions.
These include information such as the function pre and post
conditions, etc. These summaries are generated in top down
manner in context of the caller-callee relationships between
the functions. Thus if a function f() calls a function g(), then
g()’s summary is generated first and used later when the
function f() is being analyzed. By using such an approach,
the overall complexity would be lesser than if both the
functions are analyzed together. With this new approach,
the complexity may be curbed while at the same time not
sacrificing the code coverage.

For this approach, the authors of [18] have proposed an
algorithm called SMART. They have reported that SMART is
able to achieve the same level of coverage as the earlier DART
algorithm. The Fig. 7 shows an experimental comparison of
the number of runs with SMART and DART. SMART shows
only a linear growth as compared to DART, which may show
exponential scaling in the number of possible execution
paths. The major challenge is to generate the summaries
intelligently, rather than naively generating all possible
summaries, since we want to counter path explosion.

CSI JOURNAL COMPUTING, VOL. XX, NO. XX, XXXXXXXXX 8

TABLE 1
Some recent tools that have used symbolic execution

Tools Description

Symbolic (Java)PathFinder It is a test generation system based on the symbolic execution model, based on the NASA
Java PathFinder (JPF), which initially used model checking. It implements generalized symbolic
execution, that adds multi-threading and other capabilities in extension to classical symbolic
execution. It has helped discover subtle bugs in several critical NASA systems.

DART It tries to combine random testing with symbolic execution, to maximize the coverage, while
being more efficient as well. It is an example of both symbolic and concrete execution or
concolic execution. It was developed for C.

CUTE and jCUTE It extends DART to handle multi-threaded programs. Can also perform pointer analysis and
solves pointer constraints. CUTE is for C wheras jCUTE is for Java.

CREST It is an open source tool designed for C. It is also extensible and has been used as a basis
for several other tools.

SAGE It is an automated whitebox fuzz tester, that uses compositional symbolic execution. It
extends unit testing to whole application testing.

Pex It is a test generation tool for .NET code. It was developed at Microsoft as a Visual Studio
Tool.

EXE It is a symbolic execution tool for C, written especially to check complex code and low level
systems code. It introduces several optimizations, to achieve considerable speed up.

KLEE It is the successor of KLEE which is based on the LLVM framework. It extends EXE by
considering environmental interaction and better memory management for storing states.

Fig. 7. Experimental comparison of the number
of runs with SMART and DART [18]

algorithm. The Figure 7 shows an experimental
comparison of the number of runs with SMART
and DART. SMART shows only a linear growth
as compared to DART, which may show expo-
nential scaling in the number of possible execu-
tion paths. The major challenge is to generate
the summaries intelligently, rather than naively
generating all possible summaries, since we
want to counter path explosion.

3.3 Automated Whitebox Fuzz Testing

Fuzz testing is a heavily used random testing
method for detecting security vulnerabilities.
This basically involves sending input data to
the application and then randomly mutating
the input and then testing the results. It is a
form of black box testing. Whitebox fuzz test-
ing [19] is an attempt to combine fuzz testing
with symbolic execution, in an attempt to facil-
itate dynamic and automated test generation.
It leverages off DART and other predecessors.
Whitebox fuzz testing is much more efficient
than the conventional black box methods. It can
find several errors that are beyond the reach of
the black box fuzzers.

Whitebox fuzzing introduces several new
concepts to extend symbolic testing to whole
applications. It tries to deal with path explosion
and other obstacles by introducing a novel
parallel state space search algorithm called gen-
erational search algorithm. Also because of other
technological improvements such as more ad-
vanced SMT solvers and concise constraint
representations, it can be applied to programs
having millions of lines - such as large file
parsers, etc.

The SAGE [20] fuzzer based on this tech-

Fig. 7 : Experimental comparison of the number of
runs with SMART and DART [18]

3.3	 Automated Whitebox Fuzz Testing

Fuzz testing is a heavily used random testing method
for detecting security vulnerabilities. This basically involves
sending input data to the application and then randomly
mutating the input and then testing the results. It is a form of
black box testing. Whitebox fuzz testing [19] is an attempt to
combine fuzz testing with symbolic execution, in an attempt
to facilitate dynamic and automated test generation. It
leverages off DART and other predecessors. Whitebox fuzz
testing is much more efficient than the conventional black
box methods. It can find several errors that are beyond the
reach of the black box fuzzers.

Table 1 : Some recent tools that have used symbolic execution

Tools Description
Symbolic (Java)
PathFinder

It is a test generation system based on the symbolic execution model, based on the NASA Java
PathFinder (JPF), which initially used model checking. It implements generalized symbolic
execution, that adds multi-threading and other capabilities in extension to classical symbolic
execution. It has helped discover subtle bugs in several critical NASA systems.

DART It tries to combine random testing with symbolic execution, to maximize the coverage, while being
more efficient as well. It is an example of both symbolic and concrete execution or concolic execution.
It was developed for C.

CUTE and jCUTE It extends DART to handle multi-threaded programs. Can also perform pointer analysis and solves
pointer constraints. CUTE is for C whereas jCUTE is for Java.

CREST It is an open source tool designed for C. It is also extensible and has been used as a basis for several
other tools.

SAGE It is an automated whitebox fuzz tester, that uses compositional symbolic execution. It extends unit
testing to whole application testing.

Pex It is a test generation tool for .NET code. It was developed at Microsoft as a Visual Studio Tool.
EXE It is a symbolic execution tool for C, written especially to check complex code and low level systems

code. It introduces several optimizations, to achieve considerable speed up.
KLEE It is the successor of KLEE which is based on the LLVM framework. It extends EXE by considering

environmental interaction and better memory management for storing states.

R2 : 20
	

Static Analysis and Symbolic Code Execution

CSI Journal of Computing | Vol. 2 • No. 4, 2013

Whitebox fuzzing introduces several new concepts to
extend symbolic testing to whole applications. It tries to deal
with path explosion and other obstacles by introducing a novel
parallel state space search algorithm called generational
search algorithm. Also because of other technological
improvements such as more advanced SMT solvers and
concise constraint representations, it can be applied to
programs having millions of lines - such as large file parsers,
etc.

The SAGE [20] fuzzer based on this technique has
become a highly popular tool and is used regularly at
Microsoft Corporation. It has saved millions of dollars and
found several bugs. It represents the largest ever use of a
SMT solver. We examine SAGE in more detail in section 5.

4.	� Symbolic Execution : Major Challenges and
Proposed Solutions
There are several challenges that are an area of concern

for symbolic execution. Some of these are enlisted below:
1)	 How to extend symbolic execution to handle complex and

recursive data structures and loops?
2)	 How to handle multi-threaded and nondeterministic

programs with symbolic execution?
3)	 How to extend the constraint solver to solve string

constraints and support other native code features?
A good survey of these and other challenges is presented

in [8]. Here we focus on the two major issues that have become
a point of focus for researchers. These are:
1)	 How to curb the path space explosion?
2)	 How to optimize constraint solving?

Here we present 3 different approaches that attempt to
overcome one or both of the above mentioned hurdles.

4.1	 RWSet Analysis Based Path Pruning

The idea of RWSet analysis for countering path explosion
was proposed in [21].

4.1.1 Approach

Here the authors propose to make symbolic execution
more scalable by using the concept of Read-Write Set (RWSet)
analysis, to discard all paths in the execution tree that
will produce the same effect as a previously executed path.
Here two major ideas are used to prune the paths. Firstly
whenever an execution reaches a program point in exactly
the same state as a previous execution then it should be
pruned. Secondly if an execution differs from a previous
execution only in values that are never going to be written,
then it cannot cause a different execution flow, so even it
should be discarded. By truncating suffixes of all such paths,
significant gains are expected, because at each branch point
these suffixes could spawn an exponential number of paths.

4.1.2 Implementation

The constraint cache is used to record the states
corresponding to which a program state was reached. Now

for the currently executing path, if we ever get a cache hit,
then obviously the execution of that path should be aborted.
The concept of write set is used to store only the difference
of various concrete states from a common initial state, since
storing the complete states may be too expensive. The concept
of read set is used to maintain the values that will be read
beyond the current program point. All other values should
be discarded from comparison. Also the cache must be call
site sensitive as otherwise a state stored in the cache for one
function call may lead us to erroneously discard a path in
some completely unrelated function call.

4.1.3 Evaluation

The tool EXE [10] was run, both with RWSet and without
it on some benchmarks. It was found that RWSet significantly
reduced the number of paths explored to achieve the same
coverage. In all cases less then half the number of paths were
explored with RWSet, in a few cases the number dropped
to as low as just 11% of the original EXE. The overhead of
enabling RWSet was also very less; approximately just 4%.

4.2	 Parallel Symbolic Execution

Parallelizing the symbolic execution has been proposed
in [22].

4.2.1 Approach

The paper proposes to reduce the time spent in
exploring paths of the symbolic execution tree, by means
of parallelization. The authors use a set of pre conditions
to partition the execution tree and distribute the symbolic
execution amongst different workers. The partitioning is done
such that each worker can independently execute its subtree
without any need of interprocess communication (IPC). This
is important because otherwise the overhead of IPC may
completely negate the gains from parallelization. Initially a
shallow form of symbolic execution is run to generate the pre-
conditions which will help partition the execution tree. The
authors have named this as Simple Static Partitioning.

4.2.2 Implementation

The authors attempt to parallelize symbolic execution
in a generic manner to make it applicable to different
environments such as multi core computers, grid or clouds.
The concept of Simple Static Partitioning is used to distribute
work amongst different workers. For this first of all an initial
set of constraints is generated via shallow symbolic execution.
It is important to obtain a set of constraints that are disjoint,
complete and useful. This ensures that each worker will do
some useful work that does not overlap with any of the other
workers. The different partitions that are thus obtained
are stored in a queue. The user can control both the depth
of the initial symbolic execution and the queue size. Both of
these are critical factors that determine the success of the
algorithm. The size of the constraint queue will determine
how effectively the load balancing will be whereas the initial
depth will determine the quality of the generated partitions.

Dhiren Patel, et.al.	 R2 : 21

CSI Journal of Computing | Vol. 2 • No. 4, 2013

4.2.3 Evaluation

While the paper cites several detailed metrics for
evaluation, the results in a nutshell show that the speed up is
possible in all systems. The results also show that the number
of parallel workers (NPW) and the constraint queue size affect
the speed up. There was 90x speedup in analysis time with
NPW = 128 and 70x speed up in automatic test generation,
with NPW = 64.

4.3	 Memoized Symbolic Execution

In the final approach we present, the authors [12] use
memoization to counter both the path explosion problem and
the constraint solving cost.

4.3.1 Approach

The main idea is that usually symbolic execution is run
several times, for instance whenever an error is detected, the
program is modified and then re-run. The authors attempt
to leverage from the information gained during earlier runs.
To this end they maintain a trie structure, that helps in
recording efficiently the states of a particular execution. The
computations can be re-used during the next run. For example
paths that were not useful in prior runs may be pruned and
the constraint solver may be turned off for constraints that
were previously solved. At each run the trie structure must
also be appropriately modified.

4.3.2 Implementation

The trie data structure is used to store the information
from each run. A new trie node is created whenever a branch
is encountered during the symbolic execution. The node is
very lightweight - storing just the method, and instruction
offset and the choice taken. The trie is first of all initialized.
During the first execution the trie is constructed to guide
future executions. The nodes in the trie are split into bound
nodes and unsatisfiable nodes. This trie can later be searched
using either BFS or DFS. During the memoized analysis
phase, the trie is loaded into the memory. It guides the
execution; it is appropriately modified and also compressed to
remove irrelevant features in the current context. Finally in
the trie merging phase the compressed trie may be optionally
merged with the older trie to obtain the complete trie.

4.3.3 Evaluation

It was found that the savings obtained depend on how the
program is changed and where it is changed, during for e.g.
regression analysis. During each execution, however, it was
observed that by memoization there was a dramatic drop in
the number of calls to the solver. However while this did not
reflect significant time gains for simple-to-analyze programs,
the authors predict that memoization may be very useful for
critical and complex programs.

5.	� How applicable is Static Analysis in the real
world?
In this section, we discuss three static analysis tools to

see how useful they actually are in practice.

5.1	 The FindBugs Experience

FindBugs is an open source static analysis tool that was
developed at the University of Maryland. In the year 2009,
Google held a large scale FindBugs Fixit. This involved over
300 engineers, reviewing thousands of warnings. This was
an attempt to evaluate how effective FindBugs would be in
practice. Over the course of two days, it was found that static
analysis does catch mistakes. However most of these are not
very important. Static analysis may at best catch about 5%
to 10% of software quality problems. However it is cheaper.
If used at an earlier stage static analysis can reduce the
development cost. Overall however the results of the review
were disappointing, as most of the issues reported by the
tool were low on priority and did no cause any significant
misbehavior.

5.2	 Coverity: Static Analysis in Real World

In this popular paper [23] that was downloaded a record
number of times from the CACM website, the authors provide
some interesting analyses of why static analysis tools fail to
do well in practice.
�� Firstly to make a tool popular some sort of trial run or

demo must be given to customers. Many a times the
customer’s do not allow the tool to access some of their
code for safety and privacy concerns. Thus the tool is
unable to find the serious or important bugs and fails to
convince the potential customers.

�� Many a times the compilers that the company uses to
write the code are in-fact buggy. They often deviate from
the laid down standards for languages like C or Java.
This leads to totally unexpected behavior in some cases
when the tool is used along with such compilers. However
the companies are unwilling to make any changes in
their development environment which forces some ugly
workarounds.

�� The programmers often don’t take the bugs reported by
the tool seriously. If they can’t understand a reported
bug they pass it off as a false positive, rather than trying
to analyze the code base.

�� Often the bugs reported by two or more static analysis
tools are different. Often the static tools themselves are
erroneous so that the developers don’t have much faith
in them.

�� If the tool reports false positives of more than 30% then
people generally tend to ignore the tool.

�� Often the programmers write up any sort of junk for the
code. The tool must be designed to take into consideration
some of the foolishest errors.

5.3	 SAGE : Whitebox Fuzz Tester

In this paper [20] again from the CACM, the picture
is remarkably different and rosy from the previous two
experiences. We have already described white box fuzzing
inan earlier chapter. SAGE the tool designed, based on this

R2 : 22
	

Static Analysis and Symbolic Code Execution

CSI Journal of Computing | Vol. 2 • No. 4, 2013

has made a massive impact in the development scenario at
Microsoft. We list some of these below:
�� SAGE has been running 24/7 on 100+ machines since

2008.
�� Since SAGE has extended testing to whole application

level, it has found hundreds of bugs in apps, media
players, etc that were missed by everything else.

�� It has found 33
�� Due to SAGE millions of dollars lost in bugs and patches

have been saved.
�� It holds the record for the largest computational use of

the SMT solvers.
�� SAGE is today used daily in many groups at Microsoft. It

is easy to deploy and fully automated.
This shows that when static analysis is combined with

symbolic execution, there may possibly be dramatic rise in
applicability.

6.	 Conclusion & Research Directions
In this paper, we discuss program testing and verification,

focusing on symbolic execution. We explore tools - KLEE and
Kudzu that apply symbolic execution, next we look at the
upcoming paradigms in symbolic execution - concolic and
compositional execution. Finally, we have highlighted major
challenges to symbolic execution and three possible solutions
namely - parallelization, memoization and pruning, to
address them. Research directions to go from here are toward
improving the scalability of symbolic execution, and heuristic
searches that will help to explore more interesting program
states. Another interesting area would be to develop more
generalized and powerful constraint solvers.

References
[1]	 J. C. King, “Symbolic execution and program testing,” Commun.

ACM, vol. 19, no. 7, pp. 385-394, Jul. 1976.
[2]	 F. Nielson, Principles of program analysis. Berlin New York:

Springer, 1999.
[3]	 S. S. Muchnick, Advanced compiler design and implementation.

Morgan Kaufmann, 1997.
[4]	 P. Cousot, “Abstract interpretation in a nutshell,” howpublished,

7th October 2012. [Online]. Available: http://www.di.ens.fr/
cousot/AI/IntroAbsInt.html

[5]	 F. J, “Symbolic execution,” University of Maryland at College
Park. [Online]. Available: http://www.cs.umd.edu/class/fall2012/
cmsc498L/materials/se.pdf

[6]	 E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask,” in In
Proceedings of the IEEE Symposium on Security and Privacy,
2010.

[7]	 C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen,
N. Tillmann, and W. Visser, “Symbolic execution for software
testing in practice: preliminary assessment,” in Proceedings of
the 33rd International Conference on Software Engineering, ser.
ICSE ’11. ACM, 2011, pp. 1066-1071.

[8]	 C. S. Păsăreanu and W. Visser, “A survey of new trends in

symbolic execution for software testing and analysis,” Int. J.
Softw. Tools Technol. Transf., vol. 11, no. 4, pp. 339-353, Oct.
2009.

[9]	 C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proceedings of the 8th USENIX conference on
Operating systems design and implementation, ser. OSDI’08.
USENIX Association, 2008, pp. 209–224.

[10]	 C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “Exe: Automatically generating inputs of death,” ACM
Trans. Inf. Syst. Secur., vol. 12, no. 2, pp. 10:1-10:38, Dec. 2008.

[11]	 C. C, “Klee : Effective testing of systems programs,” PowerPoint,
Stanford University, 16th April 2009. [Online]. Available: www.
doc.ic.ac.uk/ cristic/talks/kleestanford-2009.ppsx

[12]	 G. Yang, C. S. Păsăreanu, and S. Khurshid, “Memoized symbolic
execution,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012. ACM, 2012,
pp. 144-154.

[13]	 P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, “A symbolic execution framework for javascript,” in
Security and Privacy (SP), 2010 IEEE Symposium on, may
2010, pp. 513-528.

[14]	 R. Majumdar, I. Saha, K. C. Shashidhar, and Z. Wang, “Clse:
closed-loop symbolic execution,” in Proceedings of the 4th
international conference on NASA Formal Methods, ser.
NFM’12. Springer-Verlag, 2012, pp. 356-370.

[15]	 C. Păsăreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M.
Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing nasa
software,” in Proceedings of the 2008 international symposium
on Software testing and analysis. ACM, 2008, pp. 15-26.

[16]	 K. Sen, “Concolic testing,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 571-572.

[17]	 P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed
automated random testing,” in Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’05. ACM, 2005, pp. 213-223.

[18]	 P. Godefroid, “Compositional dynamic test generation,” in ACM
SIGPLAN Notices, vol. 42, no. 1. ACM, 2007, pp.47-54.

[19]	 P. Godefroid, M. Levin, D. Molnar et al., “Automated whitebox
fuzz testing.” NDSS, 2008.

[20]	 P. Godefroid, M. Y. Levin, and D. Molnar, “Sage:Whitebox
fuzzing for security testing,” Queue, vol. 10, no. 1, pp. 20:20-
20:27, Jan. 2012.

[21]	 P. Boonstoppel, C. Cadar, and D. Engler, “Rwset: Attacking
path explosion in constraint-based test generation,” Tools and
Algorithms for the Construction and Analysis of Systems, pp.
351-366, 2008.

[22]	 M. Staats and C. Pǎsǎreanu, “Parallel symbolic execution
for structural test generation,” in Proceedings of the 19th
international symposium on Software testing and analysis, ser.
ISSTA ’10. ACM, 2010, pp. 183-194.

[23]	 A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: using static analysis to find bugs in the
real world,” Commun. ACM, vol. 53, no. 2, pp. 66-75, Feb. 2010.

[24]	 A. Chaudhuri and J. S. Foster, “Symbolic security analysis of
ruby-on-rails web applications,” in Proceedings of the 17th ACM

Dhiren Patel, et.al.	 R2 : 23

CSI Journal of Computing | Vol. 2 • No. 4, 2013

About the Authors

Dr. Dhiren Patel is currently a Professor of Computer Engineering at NIT Surat. He carries over more
than 20 years of experience in Academia, R&D and Secure ICT Infrastructure Design. Prof. Dhiren has
authored a book “Information Security: Theory & Practice” published by Prentice Hall of India (PHI) in
2008. He chaired IFIP Trust Management VI conference in 2012. He has been a Visiting Professor at
University of Denver Colorado USA (2014) and at IIT Gandhinagar India (2009-11).

Madhura Parikh did her B.Tech in Computer Engineering from NIT Surat (2009-13) and her Masters
in Computer Science from The University of Texas at Austin (2013-14). Her interests are in Computer
Systems, Machine Learning and Artificial Intelligence. She is also an open source enthusiast.

Reema Patel, Ph.D in Computer Engineering Department, NIT Surat. She received her B.E., and
M.Tech., degrees in Computer Engineering from NIT Surat, in 2006 and 2010 respectively. Her main
areas of research interests are Formal Verification, Modeling and Analysis Methods for Stochastic
Systems and Information Security.

conference on Computer and communications security, ser. CCS
’10. ACM, 2010, pp. 585-594.

[25]	 P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar
based whitebox fuzzing,” in Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’08. New York, NY, USA: ACM,
2008, pp. 206-215.

[26]	 B. Johnson, “A study on improving static analysis tools: why are
we not using them?” in Proceedings of the 2012 International
Conference on Software Engineering, ser. ICSE 2012. IEEE
Press, 2012, pp. 1607-1609.

[27]	 N. Ayewah and W. Pugh, “The google findbugs fixit,” in
Proceedings of the 19th international symposium on Software
testing and analysis, ser. ISSTA ’10. New York, NY, USA: ACM,
2010, pp. 241-252.

